Hi @drobinson
OK, I think we have a winner with HotSpotter, and by using HotSpotter, we’ll be able to even move forward eventually with the machine learning-based PIE algorithm. HotSpotter is showing excellent matching, clearly identifying duplicate individuals, and overall is much faster. The example you provided above as a HotSpotter match can be viewed here:
And clicking the “Inspect” button for the LSBB-144 matching shows great hotspot overlap:
https://tier1.dyn.wildme.io:5008/api/query/graph/match/thumb/?extern_reference=ujtgpwgdvjmycctq&query_annot_uuid=69aad226-3c63-45be-bb64-9d7ecacd0f3a&database_annot_uuid=76b5215c-f7f5-4e76-a8e1-5199c8e372d1&version=heatmask
It’s even likely that LSBB-327 is the same individual:
https://tier1.dyn.wildme.io:5008/api/query/graph/match/thumb/?extern_reference=ujtgpwgdvjmycctq&query_annot_uuid=69aad226-3c63-45be-bb64-9d7ecacd0f3a&database_annot_uuid=d13b8084-094e-4733-98c8-c944c02f14b9&version=heatmask
Another HotSpotter example suggesting LSBB-277 and LSB-479 are likely the same individual:
Overall, I was able to convert 2058 left- and right-side patterns to use HotSpotter, leaving only 81 Encounters (listed below) that would need to be manually reprocessed to take advantage of HotSpotter.
The process for using HotSpotter with leopard sharks matches this exact process for using PIE with whale sharks:
So you’ll be processing the spots the same way, and even still be able to use Modified Groth, but you’ll kick off and review matching differently using the more standard Wildbook “start match” menu option under each eligible annotation:
HotSpotter ignores the spots entirely and rather looks at the whole cropped annotation for visual similarity. Eventually, we can train a machine learning detector to do the cropping and rotating for us, removing the need for this manual step altogether (like we do for many other species).
Please try a few matches with HotSpotter and let me know if you see it working better.
I am including a list of 81 Encounters that will need to be reprocessed manually (remapping the spots as shown in the YouTube video) to use HotSpotter.
Thanks,
Jason
These 81 Encounters need reprocessing to match with HotSpotter. You can enter the link below into the top search bar of Wildbook to get a link to the Encounter:
LEFT: c9c975c1-24fe-4450-bb89-c7ebf439b92f
RIGHT: c9c975c1-24fe-4450-bb89-c7ebf439b92f
LEFT: dba61728-2508-46b7-94df-91ce676fb944
LEFT: c3655b77-d4c8-4c6f-aa71-937266434efd
RIGHT: 137a3ced-42e5-486e-90ab-aa389298a0d6
LEFT: b4987ab8-3f0f-4370-a94e-1c5a55acd50e
LEFT: 922f7f25-a709-4586-b848-0bae8acc5992
LEFT: 3e0c8bcf-1268-47ac-a273-ca56855a76bc
LEFT: 9554c547-d613-4641-b54e-ee2081c1853e
RIGHT: 57808b32-5e93-49ae-a3f2-4c70e67dd547
RIGHT: c58a99c3-1206-4286-a543-3adeb3815121
RIGHT: 51b1290c-fce9-4a6e-b393-9a385dfed13f
LEFT: 0a577299-b4cc-444b-abbb-6695f333b5a4
LEFT: debba4d1-5f55-47f4-9846-abe4ecd5e263
LEFT: 340b5ba4-e44c-4762-b659-da1390bed835
RIGHT: fb61b5ea-b20f-4b3d-996d-fd7fad0fe767
LEFT: b5d59eb8-d0b3-4427-8b5a-270a3da2d09d
LEFT: 6a25e8fb-d93d-41e0-8e1d-63ed9acd2934
LEFT: f8b77c08-5b20-4130-b412-6b589f7390c6
LEFT: 33add553-e8ee-47fe-9354-2cb8ec32c829
LEFT: 72a1b3b1-1195-4b82-ae8c-dae3a32f38bf
LEFT: 85f00c9d-50b6-4ebd-abef-0985b78d1df9
RIGHT: 6ad01959-c0f2-4940-808f-6580d41b6a4e
LEFT: 33749aff-3725-4ac9-88b2-90a1c6e558d9
RIGHT: 33749aff-3725-4ac9-88b2-90a1c6e558d9
LEFT: df82c80c-ca3a-4a98-adb6-eb939ca80398
RIGHT: df82c80c-ca3a-4a98-adb6-eb939ca80398
LEFT: 977f7ddc-2851-4446-bb7b-dde106e61d43
LEFT: d5d72eec-dfd5-4c47-9dff-ee9f84778ee9
RIGHT: d5d72eec-dfd5-4c47-9dff-ee9f84778ee9
LEFT: 66b94825-73df-4e4b-b075-e03743985e5c
LEFT: 356a8068-bd60-4808-9039-93888d5a7a67
LEFT: 4f492288-dc22-4e6b-8e92-79d1ccd2bd15
RIGHT: 93571e3e-3e84-474f-86ba-40cda32bc92d
LEFT: 2570d75f-a3dd-4e4a-9a98-490730abed01
LEFT: f3846b1c-7b36-4a85-a39d-85985ba72767
RIGHT: f3846b1c-7b36-4a85-a39d-85985ba72767
LEFT: 769a70fa-d07f-4711-81b0-cd41a767bdf7
LEFT: 606f8853-11f2-476c-873d-bd8764a3325d
LEFT: 0d5241c5-d1ff-4534-8084-3fb30fabb5a4
LEFT: 47ef5b1a-934b-43e8-abda-bf34de312bba
LEFT: 6c39186d-58da-4e57-8978-5eb7d7e57988
LEFT: 25e1fc7d-b876-40a8-9e0a-4fd22b92d37b
LEFT: d64cb4ec-eb02-44d2-b941-c7108d032002
LEFT: 3286e28c-cf74-4e57-a21e-aa783d7c7170
LEFT: 5b1809b1-d33a-461e-bafb-2ed6c2c21ac0
LEFT: fb2465ae-c084-4020-ad0a-4866e2e9a3a1
LEFT: 6b7f1d04-e395-4ccc-a918-c9e7ce8f29e0
RIGHT: 0350f801-1529-42eb-8a85-f3f509344c5b
LEFT: c6e4b9e0-bed3-4cfb-9281-e3e4aa83cf94
RIGHT: c6e4b9e0-bed3-4cfb-9281-e3e4aa83cf94
LEFT: 3343db45-c7ae-4537-a0f9-8e99056bed95
RIGHT: 3343db45-c7ae-4537-a0f9-8e99056bed95
LEFT: bd46e238-a6b8-42e0-84e7-02ce71c7f9c7
RIGHT: bd46e238-a6b8-42e0-84e7-02ce71c7f9c7
LEFT: a37a95ca-3ce3-4e21-9f76-8a74e9dde692
RIGHT: a37a95ca-3ce3-4e21-9f76-8a74e9dde692
LEFT: 579feb9f-d603-4e62-8266-eb6d1e58cac5
LEFT: 86e2246c-70a3-49d0-9d44-05b5ca763ad3
RIGHT: 86e2246c-70a3-49d0-9d44-05b5ca763ad3
LEFT: f9a77882-85d8-4266-9a17-026d199d65ec
LEFT: a0b23ffd-68b2-4305-903f-b57e89ebdbe6
RIGHT: a0b23ffd-68b2-4305-903f-b57e89ebdbe6
LEFT: 9ef37a5d-dee0-40fb-85ec-81e0916474c0
RIGHT: 9ef37a5d-dee0-40fb-85ec-81e0916474c0
LEFT: 00938ac6-6913-4e0c-8b87-11e6753f3f71
LEFT: 01d6a0f1-055a-4f09-9d6b-1df6efcfbcd7
LEFT: 0293523f-78d9-4911-9ef9-f6be72395077
RIGHT: 03a1e2dc-9c45-40e3-9c0c-de71b3109fd7
LEFT: 0675c5c5-12c2-4331-9672-357301f193aa
LEFT: 0f07d9d0-4805-4161-a9f1-7caae808df9d
LEFT: 1a695f92-80b9-492e-84f6-a5c4e804ec4b
LEFT: 2c8ca985-24c6-4dce-b218-a7aa5938145d
RIGHT: 2c8ca985-24c6-4dce-b218-a7aa5938145d
LEFT: 53574ef8-c9ab-4df0-ab5d-25e1e1faa4e9
LEFT: 6968da49-d7d7-431a-bb1b-c114d0696e82
LEFT: a8f416b0-e553-4cdb-afb9-b7745c7da48b
LEFT: c3915bc7-3ee4-4137-9c5f-0001f4a4639e
LEFT: e799c319-a427-4cfe-9a60-4a977dc614ec
LEFT: c6867823-f6fe-4d82-a07f-ee49882ba5e8
LEFT: cee9cc61-4733-4076-8d85-125a6deea2ad
Work completed under ticket WB-1898.